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Let E be an algebraic (or holomorphic) vectorbundle over the Riemann sphere PY(C). Then
Grothendieck proved that E splits into a sum of line bundles E =@ L, and that the isomorphism
classes of the L; are (up to order) uniquely determined by E. The L; in turn are classified by an
integer (their Chern numbers) so that m-dimensional vectorbundles over IPI(C) are classified by
an m-tuple of integers

KEY=(K((E), oo, Ky(E)), Kk{(E)ZKy(E)= - zK,(E), Ki(E)eZ.

In this short note we present a completely elementary proof of these facts which, as it turns out,
works over any field £.

1. Introduction

Let E be a holomorphic (or algebraic) vectorbundle over the Riemann sphere
P!(C). (By [2] holomorphic and algebraic vectorbundles over PY(C) amount to the
same thing). In [1] Grothendieck proved that E splits into a sum of line bundles
E=@® L, and that the isomorphism classes of the L; are (up to order) uniquely
determined by E. The line bundles Z; in turn are classified by an integer (their first
Chern number) so that m-dimensional vectorbundles over PY(C) are classified by an
m-tuple of integers

K(E)':(KI(E)"",Km(E))& KI(E)Z“'ZKM(E)’ K,‘GZ.

* This work was done in part while the first author was visiting Case Institute of Technology.
** Supported in part by NASA Grant #2384, ONR Contract #N00014-80C-0199 and DOE Contract
#DE-AC01-80RA5256.
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Below we give a completely elementary proof of these facts, which, as it turns out,
works over any field k. Of course ‘completely elementary’ means that such concepts
as ‘degree of a line bundle’ or ‘first Chern number’ or ‘cohomology’ or ‘intersection
number’ are not needed or mentioned below. All we use is some linear algebra (or
matrix manipulation).

2. Vectorbundles over P

Let & be any field. The projective line P} over & can be obtained as follows. Let
U, =Spec(k[s]), U,=Spec(k[t]), Uj,=Spec(kls,s~'1)= Ui\ {0}, Uy = Spec(k[t,t~'])=
U,\{0}. Now glue U', and U, together by identifying Ui, and U, by means of the
isomorphism

k[s,s" 1= k[t,t™"], s—t7L

Now let E be an m-dimensional vectorbundle over Pj defined over k; and let
A™=Spec(k[X], ..., Xm]).- Then E|U’_, i=1,2, is trivial, i.e. EIU,= U;x A™, so that E
can be viewed (up to isomorphism) as obtained by glueing together U; x A™ and
U, X A™ by identifying U;\ {0} x A™ and U,\ {0} X A by means of an isomorphism
of the form

s,0) = (s~L As,s7Hv) Q.1

where A(s,s™!) is a matrix with coefficients in k[s,s™!] which has nonzero
determinant for all s#0, s™1#0. This last fact means that

det(A(s, s ) =s", nelZ. (2.2)

A vectorbundle automorphism of U;xA™ is necessarily of the form (s,v)—
(s, U(s)v) where U(s) is a matrix with coefficients in k[s] with det U(s) e k\ {0} and
similarly an automorphism of U, x A™ is given by a matrix V(s~!) with coefficients
in k[s~'] with determinant in k\{0}. Different trivializations of E|y, differ by an
automorphism of U;x A”™. It follows that

Proposition 2.3. Isomorphism classes of m-dimensional algebraic vectorbundles
over IP,‘( correspond bijectively to equivalence classes of polynomial m X m matrices
A(s,s71) over kis,s™'] such that det A(s,s ')=s", neZ where the equivalence
relation is the following: A(s,s~\)~A'(s,s™") iff there exist polynomial invertible
mxm matrices U(s), V(s™') over k[s] and k[s~'] respectively with constant
determinant such that

A'(s,s™H = V(s A, s HUE). 2.4)
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3. A canonical form for matrices over k[s, s~1]

Now let us study canonical forms for m X m matrices over k[s,s~!] under the
equivalence relation defined in Proposition 2.3 above. The result is

Proposition 3.1. Let A(s,s™!) be an m xm matrix over k[s,s™'] with determinant
equal to s" for some neZ. Then there exist polynomial m x m matrices V(s™') and
U(s) with constant nonzero determinant such that
sh 0
s"
V(s™HA(s, s HU(s) = . (3.2)

0 §'m
With ry=ry=---=r,, r;€Z. The r;are uniquely determined by A(s,s™"). Moreover if

A(s,s™") is polynomial in s then r;=0, i=1,...,m, and if A(s,s™") is polynomial in
s~ then ri<0, i=1,...,m.

Proof. Let’s prove uniqueness first. Write D(ry, ... r,,;) for the matrix on the right in
(3.2). Suppose there were two such matrices equivalent to A(s,s71). Then there
would be polynomial matrices with constant nonzero determinant U(s), V(s~!) such
that

V(s™O)D(ry, cousFr) =D(r1y oo, I) UGS).

If A is a matrix let

L

denote the minor of A obtained by taking the determinant of the submatrix of
A obtained by removing all rows with index in {1,...,m}\{i,...,i} and all
columns with index in {1,...,m}\{/i, ...,jk}. Then of course

(AB o g Ar kB

Py <y Tk I k
Using this on the equality V(s'l)D(rl, ey P) =D(r1, ..., ) U(s) one finds that
I/’ll 2,. (S—l)s Hlipm g1 +rkU1 2...., (s) (.3)
for all i, < --- <i;. Now for some iy, ..., i,
UhZ i ) #0.

Hence ri+ - +rys rijte for some i, < --- < i, and hence certainly ry + -+~ + ry<
ri+ - +rpforall k. Multxplymg with V(s~')~! on the left and U(s)~! on the rlght in
V(s“)D(r,, weesP) =D(r1, ..., rm)U(s) and repeating the argument gives ry+ - + 1=
ri+---ri for all k and hence r,~=r,ﬁ i=1,...,m.
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It remains to prove existence. First multiply A(s,s™!) with a suitable power s
neNU{0} to obtain a polynomial matrix B(s). Then by post multiplication with
suitable U(s) (column operations) we can find a B’(s) with b};#0 and b, =/
i=2,...,m (b}, is the greatest common divisor of byy, ..., by). Of course b, = sk fc
some k€ NU{0} because det B(s) is a power of s. Let B, be the lower-rigl
(m—1)x(m—1) submatrix of B. By induction we can assume that the propositic
holds for (m—1)x(m—1) matrices. (The case m=1 is trivial). So there a
U,(s), V(s™1) such that V(s 1B, Us(s) is of the form of the right hand side of (3.2
Then

skio0 0
k
c(s)—(1 O)B<l °>— w0 3
“\0 ») \0 U, 0 :
Com skm

for certain ky, ko, ..., k,,€ NU{0} (same k, as before) and ciekls,s7'1, i=2,...,n
Subtracting suitable k[s~!] multiplies of the first row from rows 2,...,m (which
premultiplication with a ¥(s~!)) we can moreover see to it that c; € k[s].

Now consider all polynomial matrices of the form (3.4) which are equivalent 1
B(s). Choose one for which k; is maximal. Such a one exist because k;<degr
(det B(s)) because kj,...,k,=0. We claim that then k,=k;, i=2,...,m. Indes
suppose that k; < k;. Subtracting a suitable k[s~!] multiple of the first row from tl
i-th row we find a matrix (3.4) with ¢;=s¥1*1¢’(s). Now interchange the first and tl
i-th row to find a polynomial matrix B’(s) such that the greatest common divisor «
its first row elements is s*! with ki=k,+ 1. Now apply to B’(s) the same procedure :
above to B(s). This would give a C’(s) of the form (3.4) with k|> k|, a contradictio:
We can therefore assume that in (3.4) k;=k;, c;iekls], i=2,...,m. Subtractii
suitable k[s]-multiples of the 2-nd, ..., m-th columns from the first one we find
matrix (3.4) with degree (c;)<k;. But then deg(c;) <k, so that a suitable k[s~
multiple of s¥1is equal to ¢; so that a further premultiplication with a V(s™!) gives |
a matrix (3.4) with ¢;=---=c¢,,=0. This proves the first half of the last part of tl
statement of the proposition and shows that there are ky,...,k,e NU{0
k\=--zk, (by permuting columns and rows if necessary) and U(s), V(s™!)
constant nonzero determinant such that

V(s™Hs"A(s, s~ U(s) = V(s HB(s)U(s) =D(k 1, ..., k).

Multiplying with s™" gives V(s HA(s,s )HU(s) =D(ry, ...,r,,) with ri=k;—n. T
second half of the last statement of the proposition is proved as the first half starti
with a matrix B(s~!) and using row (resp. column) operations everywhere whe
we used column (resp. row) operations above. This concludes the proof of Propo.
tion 3.1.
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4. Classification of vectorbundles over P}

Let O(n), neZ be the line bundle over P} defined by the glueing matrix
A(s,s")=s"". Obviously then the bundle defined by the glueing matrix
A(s,s ) =D(ry, ..., 1) is equal to the direct sum O(—r,)® - @ O(—r,).

Theorem 4.1. Let E be an algebraic m-dimensional vectorbundle over Pk which is
defined over k. Then E is isomorphic over k to a direct sum of line bundles

E=0K)® @0k, Kij=-=K, Ke€eZ i=1,..,m,

and the k; are uniquely determined by the isomorphism class of E.

Remarks 4.2. It is perhaps worth remarking that E is positive (meaning that all the
k{E)=0) if the glueing matrix A(s,s”") is polynomial in s~ and that E is negative
(i.e. k(E)=<0 all i) if A(s,s7!) is polynomial in s. This follows from the last
statement of Proposition 3.1. Also E contains a summand O(n) with n>0 if
deg(det A(S,s~!))<0. Finally it follows that vectorbundles over IP}( have no forms,
i.e. if E and E’ are two vectorbundles over k which become isomorphic over the
algebraic closure £ of & then E and E’ are also isomorphic over k. This can of course
also be seen by other, more sophisticated, means (e.g. Galois cohomology).
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